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Abstract
Keyphrase provides accurate information of document con-
tent that are highly compact, concise, full of meanings, and
widely used for discourse comprehension, organization, and
text retrieval. Though previous studies have made substan-
tial efforts for automated keyphrase extraction and genera-
tion, surprisingly, few studies have been made for keyphrase
completion (KPC). KPC aims to generate more keyphrases
for document (e.g. scientific publication) taking advantage
of document content along with a very limited number of
known keyphrases, which can be applied to improve text in-
dexing system, etc. In this paper, we propose a novel KPC
method with an encoder-decoder framework. We name it
deep keyphrase completion (DKPC) since it attempts to cap-
ture the deep semantic meaning of the document content to-
gether with known keyphrases via a deep learning framework.
Specifically, the encoder and the decoder in DKPC play dif-
ferent roles to make full use of the known keyphrases. The
former considers the keyphrase-guiding factors, which aggre-
gates information of known keyphrases into context. On the
contrary, the latter considers the keyphrase-inhibited factor
to inhibit semantically repeated keyphrase generation. Exten-
sive experiments on benchmark datasets demonstrate the ef-
ficacy of our proposed model.

Introduction
Keyphrases are highly concise phrases that can provide com-
pact and accurate information of given document content.
Since high-quality keyphrases can facilitate the understand-
ing, organizing, and accessing of document content, they
are wildly used for NLP tasks, such as document clustering
(Hammouda, Matute, and Kamel 2005; Chiu et al. 2020),
text summarization (Qazvinian, Radev, and Ozgur 2010;
Cano and Bojar 2019), and text retrieval (Boudin, Gallina,
and Aizawa 2020). Due to the broadly demand, many au-
tomatic keyphrases extraction and generation methods are
proposed over the years (Meng et al. 2017).

In this paper, we concentrate on the problem of keyphrase
completion (KPC), which aims to predict a relative large
fixed size of keyphrases for document management. Con-
sider the following situation where a publications retrieval
system is going to be established and improved, each aca-
demic paper is demanded for N keyphrases to fill in while
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Figure 1: Example of keyphrase completion for text retrieval
system.

it only provides a very limited number of known ones (i.e.
much lower than N) and cannot meet the demand. In this
kind of cases, it needs and expects for KPC, i.e. to predict
more keyphrases for completion.

Most existing keyphrase prediction models, whether they
be extracted-based methods (Mihalcea and Tarau 2004; Wan
and Xiao 2008) or generated-enhanced methods (Meng et al.
2017), solely take advantage of the content of document.
In fact, as we mentioned before, a document like scien-
tific publication usually has already provided a few known
keyphrases, with indicative topic information for the paper.



For example, in Figure 1 we show an example of
keyphrase completion for text retrieval system, in which
the scientific document have already existed two known
keyphrases and be demanded at least five ones to complete.
A serious drawback of using existing models for KPC is that
they ignore the role of the known keyphrases and conse-
quently fail to consider the already summarized information
about them.

In this paper, we propose a novel KPC method with an
encoder-decoder framework. We name it as Deep KeyPhrase
Completion (DKPC) since it attempts to capture the deep
semantic meaning of the document content together with
known keyphrases via a deep learning framework.

Specifically, we believe that the known keyphrases
have different roles in keyphrase completion, including
keyphrase-guiding factors and keyphrase-inhibited factors.
Firstly, we take the keyphrase-guiding factors into con-
sideration for the encoder, which aggregates information
of known keyphrases into context. Secondly, we take the
keyphrase-inhibited factor into consideration for the de-
coder, which inhibits semantically repeated keyphrase gen-
eration. We conduct a comprehensive comparison on four
benchmark datasets against two unsupervised models and
two supervised deep learning models as baselines, and the
results demonstrate the effectiveness of our proposed model.

The contributions of this paper are threefold:

• To the best of our knowledge, this is the first work that
considers the problem of keyphrase completion using the
deep learning method.

• We propose a novel KPC method for keyphrase comple-
tion using an encoder-decoder framework.

• We conduct a comprehensive comparison on four bench-
mark datasets against four baselines, and the results
demonstrate the effectiveness of our proposed model.

Related Work
Different from keyphrase extraction, keyphrase generation
models could generate absent keyphrases by modeling such
task as a sequence-to-sequence (seq2seq) learning problem.
Meng et al. (2017) first proposed CopyRNN, a seq2seq
framework with copy mechanism for keyphrase generation.
Following this framework, many enhanced variants of Copy-
RNN are proposed (Ye and Wang 2018; Chen et al. 2019;
Cano and Bojar 2019; Chan et al. 2019; Yuan et al. 2020;
Chen et al. 2020; Liu, Lin, and Wang 2020). For example,
Ye and Wang (2018) proposed a semi-supervised methods
by leveraging both labeled and unlabeled data. Chen et al.
(2019) proposed TG-Net taking title information into con-
sideration. Chan et al. (2019) utilized reinforcement learn-
ing with adaptive rewards to generate more sufficient and
accurate keyphrase. Chen et al. (2020) designed a hierarchi-
cal decoding process and an exclusion mechanism to avoid
generating duplicated keyphrases. Moreover, Swaminathan
et al. (2020a,b) proposed a keyphrase generation approach
using conditional Generative Adversarial Networks. (Ye
et al. 2021) proposed a new training paradigm ONE2SET
without predefining an order to concatenate the keyphrases.

(Ahmad et al. 2021) proposed a method for neural keyphrase
generation with layer-wise coverage attention.

Methodology
In this section, we introduce the details of our method. As
we stated before, the existing keyphrases play two kinds of
roles in keyphrase completion, as follows:

• Guiding Factor Since keyphrases are a group of words
that condense the core information of a document, they
always belong to the related topics. For instance, the
keyphrases of this paper, “keyphrase generation” and
”attention mechanism” are both related to Natural Lan-
guage Processing. Motivated by this observation, we
can capture such relevance and let existing ground-truth
keyphrases to guide us complete more keyphrases. We
call it the guiding factor.

• Inhibiting Factor It is reported that the keyphrases of
more than 85% documents in the largest keyphrase
generation benchmark dataset have different first word
(Chen et al. 2020). In the generation stage, if the first
word of the predicted keyphrase is the same as one of
the existing keyphrases, it will be eliminated. We call it
inhibiting factor.

Therefore, motivated the basic ideas above, our proposed
model contains two modules: keyphrase-guided encoder
and keyphrase-inhibited decoder. Before we introduce our
model, we first give a formal problem definition.

Problem Definition
The task of keyphrase generation is usually formulated as
follows: given a text dataset D = {xi,yi}Ni=1 where xi is
i-th source text and yi = {yi,1,yi,2, ...,yi,M} is a set of
keyphrases of it. N is the number of documents, and M is
the number of keyphrases of the i-th document. Both the xi

and the j-th keyphrase of it are sequences of words, denoted
as xi = (i1, x

i
2, ..., x

i
Lxi

) and yi,j = (yi,j1 , yi,j2 , ..., yi,jLyi,j
),

where Lxi and Lyi,j are the number of words of the i-th
texts and its j-th keyphrase respectively.

The goal of the model is to map from x to y. Since our
task is complete more keyphrases based on document con-
tent and a limited number of known keyphrases, we split the
data into (x,k,y) where x is source text, k is the given ex-
isting keyphrases of document x in advance, and y is the
rest true keyphrases that we expect to generate for document
completion.

Keyphrase-Guided Encoder
In the keyphrase-guided encoder, we aim to utilize the
known keyphrases to guide more keyphrase generation. To
this end, we take advantage of the promising attention mech-
anism in the encoder, which can gather the information of
given keyphrases to the source text.

Source Text Representation. For words in source text, we
use a bi-directional GRU Cho et al. (2014) to learn the con-
textual representation. The word embeddings are obtained



from an initial embedding lookup table. The encoder Bi-
GRU reads the input sequence x = (x1,x2, ...,xLx) for-
wardly and backwardly to converts them into two sets of
hidden representation by iterating with the following equa-
tion along time t, respectively.

−→
hx
t = f(xt,

−−→
hx
t−1) , (1)

←−
hx
t = f(xt,

←−−
hx
t−1) , (2)

where f is a non-linear function.
−→
hx
t is the hidden state at

time t when input sequence is ordered from x1 to xLx
and

←−
hx
t is the same when input sequence is ordered from xLx

to
x1. Lx is the number of words of source text x. The forward
hidden state and backward hidden state are concatenated as
hx
i = [

−→
hx
i ;
←−
hx
i ] to represent the i-th word of x.

Keyphrase Representation. Simple averaging is suffi-
cient for keyphrase representation since keyphrase typically
consists of a small number of words (in most cases 1 or 2).
On the contrary, complicated models (like CNN or RNN)
tend to overfit (Xin et al. 2018). Therefore, similar to (Xin
et al. 2018), if a given keyphrase contains nk words, we use
the average of embedding vectors of the nk words to repre-
sent this keyphrase, as follows:

k =
w1 +w2 + ...+wnk

nk
, (3)

where k is an aggregated semantic representation vec-
tor and wi is the embedding vector of i-th word of this
keyphrase from the embedding lookup table. In the phrase
of model training, these vectors will be constantly updated
to learn more appropriate semantic representations.

Attentional Hidden State. To effectively exploit the in-
formation provided by given keyphrases, an attention layer
is used to calculate the relevance of given keyphrases and
source text, and then obtain an aggregated information vec-
tor. This formal process is as follows:

eij = (hx
i )

⊤W1kj , (4)

αi,j =
exp(eij)∑nK

n=1 exp(ein)
, (5)

ci =

nk∑
j=1

αi,jkj , (6)

where αij is the normalized attention score of the i-th word
of source text and the j-th given keyphrase. c is an aggre-
gated information vector which summarizes the information
of all the given keyphrases. It is calculated based on the sim-
ilarity of two vectors. We use the general mode as our align-
ment function Luong, Pham, and Manning (2015).

Finally, we concatenate the aggregated information vec-
tor of given keyphrases c and the source text representation
hx as encoder hidden state h for the downstream decoding
process.

h = [c∥hx ] (7)

Therefore, we can obtain [h1,h2, ...,hLx ] according to
this formula at different time steps. With the proposed
keyphrase-guided encoder, the existing keyphrases can pro-
vide some useful information related to the domain of the
source text and then guide to complete more ground-truth
keyphrases.

Keyphrase-Inhibited Decoder
In the keyphrase-inhibited decoder, we aim to inhibit se-
mantically repeated keyphrase generation. To this end, we
employ Bi-GRU with attention mechanism and copy mech-
anism (Gu et al. 2016) as the building blocks of the decoder.
It decompresses the source text into a context vector through
an attention layer and generates the target keyphrase word by
word. The process of Decoder is designed as follows:

st = GRU([et−1; ζt−1], st−1) , (8)

ct = attn(st, [h1,h2, ...,hLx
],W2) , (9)

h̃t = tanh(W3[ct; st]) , (10)
where et−1 is the embedding vector of yt−1 and ζt−1 is
position representation of it by selective reading in copy
mechanism. The context vector ct is the aggregated vec-
tor for st from the encoder’s source text representation
[h1,h2, ...,hLx] via attention mechanism.

Target hidden state st and the context vector ct that
weighs the sum of the hidden state of the encoder are com-
bined through a simple concatenation layer to produce an at-
tentional hidden sate. Later, the attentional hidden state goes
through a softmax layer and outputs the probability distri-
bution. Note that the probability of a word be produced is
composed of two parts: the probability of generating it and
the probability of coping it from source text. The process is
as follows:

p(yt|yt−1,x,k) = p(yt, g|yt−1,x,k) + p(yt, c|yt−1,x,k) ,
(11)

where p(yt, c|) is the probability of yt being copied from
source text and p(yt, g|) is the probability of yt being gener-
ating from the large vocab. Specifically, the calculation pro-
cess is as follows:

p(yt, g|) = softmax(W4h̃t) , (12)
p(yt, c|) = tanh(W5ht)st . (13)

Finally, normalize the sum of the two probabilities as the
final probability that yt is generated at the current step. If yt
is the same as the initial word of one of the given keyphrases,
then it won’t be the output as result.

Training
The widely used negative log likelihood loss is adopted to
train our model:

L = −
n∑

t=1

log p(yt|yt−1,x,k) , (14)

where yt is the t-th predicted word sequence. n is the length
of target keyphrase yt, yt is the t-th word of which.



Experiments
Experimental Settings
Datasets We utilize the public benchmark datasets for the
experiments, includes: KP20k (Meng et al. 2017), Inspec
(Hulth 2003), Krapivin (Krapivin, Autaeu, and Marchese
2009), SemEval 2010 (Kim et al. 2010).

• KP20k (Meng et al. 2017) is the largest dataset on
Keyphrase Generation. KP20k contains 567,830 sci-
entific articles, where 20,000 articles for training and
20,000 articles for testing.

• Inspec (Hulth 2003) is composed of 2000 abstracts of
scientific articles totally. The testing part which is com-
posed of 500 abstracts is used to test our model.

• Krapivin (Krapivin, Autaeu, and Marchese 2009) is not
split to testing part and training part by its original au-
thors. We thus follow the set in (Meng et al. 2017) that
uses the first 400 papers in alphabetical order as the test-
ing part in total 2,304 papers.

• SemEval 2010 (Mahata et al. 2018) consists of 288 full
length ACM articles. The testing part has 100 articles.

Note that our model is only trained once using the training of
KP20k, and evaluated on the testing part of all other datasets,
which is a normal strategy like in CopyRNN (Meng et al.
2017), TG-Net (Chen et al. 2019), and ParaNet (Zhao and
Zhang 2019).

Baselines To demonstrate the effectiveness of our pro-
posed model for keyphrase extraction, we compare it
with the following baselines, including two unsupervised
statistic-based methods TF-IDF, TextRank (Mihalcea and
Tarau 2004) and deep learning models RNN (Meng et al.
2017), CopyRNN (Meng et al. 2017).

Evaluation Protocol We follow the common practice and
evaluate the performance of our model in previous work
(Meng et al. 2017). Similar to them, we utilize F-measure
(F1)@N as an evaluation metric based on the macro-
averaged Precision, Recall. N indicates the number we need
to complete, which is set among {5, 10 or 50}. The pre-
cision is computed by the number of keyphrases generated
correctly over the number of all generated keyphrases. The
recall is calculated by the number of keyphrases generated
correctly over the number of keyphrases that are the targets
of the sample. For each method, we give the F-measure at
top 5 and top 10 predictions on four real-world benchmark
datasets.

Implementation Details During data preprocessing, we
tokenize, lowercase, and stemming the text. After that, we
use the symbol < digit > to replace each digit. Since the
task is to use some pre-designated keyphrases and document
content to complete more useful keyphrases, we need to take
out a few keyphrases before training. M denotes the number
of original targets of a data record and N denotes the number
of pre-designated keyphrases we need to take out at random.
We design the processing rules as follows:

N =



delete this sample, if M = 0

1, if M ∈ {2, 3}
2, if M ∈ {4, 5}
3, if M ∈ [6, 20]

5, if M>20

(15)

The vocabulary includes 50,000 words that appear most
frequently in the datasets. We set the embedding dimension
to 200 and the hidden size to 100. We use teacher forcing to
help training model. One batch contains 128 data samples.
Our model is optimized by Adam (Kingma and Ba 2014)
with an initial learning rate 0.001. The learning rate will
update every 10000 batches according to StepLR1. When
F1@10 on the validation set doesn’t rise for 100 consecu-
tive steps, we stop training early. During testing phrase, we
use beam search to select effective keyphrases and beam size
is set to 50.

Results and Analysis
Table 1 shows the performance of our method against four
baselines, from which we observe that our proposed model
performs better than all baselines for keyphrase completion
in terms of both F1@5 and F1@10 metrics on four datasets.
The best scores are highlighted in bold. It confirms the capa-
bility of our method in modeling the deep semantic meaning
of document content and known keyphrases for keyphrases
completion.

Analysis To make a fair comparison, we take out a few
keyphrases in advance as known keyphrases according to
our designed rules mentioned before, which is applied to all
testing datasets. In this case, fewer predictable keyphrases
will aggravate the keyphrase prediction challenges for all
methods, which leads to lower scores2.

As mentioned before, the key motivation behind our work
is that we are interested in the proposed model’s capabil-
ity for completing keyphrases based on document content
and limited known keyphrases. It is worth noting that such
a completion task is a challenging problem. To the best
of our knowledge, no existing pertinent methods are pro-
posed specifically to handle this new task. The unsupervised
keyphrase extraction models, i.e. TF-IDF and TextRank, and
the keyphrase generation models, RNN and CopyRNN, in-
evitably fail to take the known keyphrases into considera-
tion. We can observe from Table 1 that all baseline perform
worse than ours.

In KPC task, the known keyphrases can play an important
role. We believe they are always highly semantically related
to other unknown keyphrases that needed to be completed.
Our method can capture such relation and utilize known se-
mantic information to select the most conducive sentences to
the keyphrases completion from the source document with
an attention mechanism. In addition, the given keyphrases
are also aggregated into the context representation which

1A method for interval adjustment of learning rate in PyTorch.
2The absolute scores in Table 1 are thus lower than their perfor-

mance in original papers.



Table 1: The performance of expanding keyphrases of various models on four benchmark datasets.

Methods Inspec Krapivin SemEval KP20k
F1@5 F1@10 F1@5 F1@10 F1@5 F1@10 F1@5 F1@10

TF-IDF 0.107 0.151 0.068 0.067 0.061 0.073 0.108 0.101
TextRank 0.172 0.190 0.076 0.084 0.028 0.039 0.065 0.065

RNN 0.084 0.082 0.068 0.060 0.077 0.084 0.103 0.087
CopyRNN 0.179 0.194 0.127 0.106 0.106 0.128 0.161 0.142

DKPC (Ours) 0.212 0.218 0.161 0.138 0.120 0.141 0.181 0.154

Table 2: The performance of CopyRNN and our proposed model in the same case.

Methods F1@5 F1@10 P@5 P@10 R@5 R@10 Similarity

CopyRNN 0.400 0.500 0.600 0.500 0.300 0.50 0.387

DKPC 0.533 0.800 0.800 0.800 0.400 0.800 0.473

more fully exploits the information already known. On the
four datasets, our method achieves a cumulative 11.3% im-
provement at F1@5 and F1@10.

Figure 2: A keyphrase completion example of our proposed
DKPC compare to previous method CopyRNN.

Case Study
Figure 2 and Table 2 show a case study of keyphrase com-
pletion by our method against CopyRNN. we can observe
from Figure 2 that our model not only completes keyphrases
accurately but also completes more targets with less com-
putational resources. Table 2 shows the performance of the
model on Precision, Recall and F1-measure, from which we
observe that DKPC is significantly better than CopyRNN.

Specifically, we use Bert (Devlin et al. 2019) to obtain the
embedding of each keyphrase, and then calculate similarity
by non-repeating pairs between keyphrases. The sum of sim-
ilarity divided by the number of keyphrase pairs is similar-
ity. Due to the guidance of known keyphrases, our proposed
method can search for accurate keyphrases from a smaller
semantic space than CopyRNN’s. That’s why our model can
find more real keyphrases in less time. The keyphrases in-
hibition factor is also helpful. For example, in contrast to
CopyRNN, our model never includes the known keyphrase
“practical” as a target to complete, or any keyphrase begin-
ning with the first word of any known keyphrase.

Conclusion and Future Work
In this paper, we concentrate on the new keyphrase com-
pletion task. To the best of our knowledge, this is the first
work that considers the problem of keyphrase completion.
To solve this problem, we propose a novel KPC method that
takes an encoder-decoder framework. The encoder and the
decoder in our method make full use of the guidance fac-
tor and inhibition factor of known keyphrases, respectively.
The comprehensive experimental results demonstrate the ef-
fectiveness of our proposed model in the task of keyphrase
completion. Some interesting future work may include that
Our model only explore post-processing for inhibition of
known keyphrases. One interesting direction is to design
some specific layers on the deep learning model structure
to make the inhibition of known keyphrases work better.
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